

The World's Most Efficient High Capacity Transmission Conductor

- Twice the Capacity of ACSR
- 30-40% Reduction in Line Losses

CTC GLOBAL

Proven Reliability Worldwide

ACCC The Utility Value Proposition

"Transmission for the 21st Century"

Gulf Coast Electrical Summit

The High-Capacity, Low-Sag ACCC[®] Conductor Offers:

Greater Strength & Reduced Sag

Increased Spans on Fewer / Shorter Structures

Twice the Capacity of AAAC, ACSR & others

Reduced Line Losses by 25 to 40%

Decreased Fuel Consumption & Emissions

Improved Longevity

& Reduced Life Cycle Costs

...And, its been installed by over 100 utilities at more than 275 project sites. This is not a novelty. <u>This is</u> proven and appropriate technology for our modern grid

Challenges facing Transmission Owners

- Sag violations and Increasing capacity requirements
- Tower replacement
- Right of Way, Community opposition (NIMBY)
- Shortening Construction Schedules
- Meeting Environmental Goals and Access to Renewable Energy
- Increasing capacity requirements (load growth)
- Reliability Improvement Adequate capacity in N-1 scenarios

C GLOBAL

- Cost and finance of projects
- Efficiency and losses Impact on Rates

Primary Drivers for New Transmission Projects

NERC Long Term Reliability Assessment Dec 2013

A few of CTC's USA & International Customers:

Why Did These Utilities Choose ACCC?

Because, after discovering its technical merits and evaluating its durability, it provided the most economical solution for their specific projects

Summary of Technical Advantages:

Low Thermal Sag and High Strength Allow:

- > Increased capacity, increased revenue & reduced congestion
- Fewer short-circuit events & improved reliability
- Increased spans between fewer and/or shorter structures

Added Aluminum Content (without any weight penalty) Allow:

- > A 25 to 40% reduction in line losses (depending upon load)
- Reduced fuel consumption & reduced emissions
- > Reduces generation capacity requirements

Additional Advantages:

- > Higher strength core reduces risk of mechanical failure
- > Composite core is impervious to corrosion
- Composite core resists cyclic load fatigue

The Value of Line Loss Reduction

Value of Line Loss Reductions									
	Peak Amps	Temperature at peak amps (C°)	Load Factor	MVA	Annual Line Losses (MWh)	Line Loss Reduction	Value of Reduction (at \$50/MWh)	Value of R per lineal o (meter)	
ACSR	1,000	95	53%	398	76,917				
ACCC®	1,000	82	53%	398	56,588	20,329	\$1,016,450	\$3.39	\$1.03
ACSS	1,600	194	53%	637	251,998				
ACCC®	1,600	156	53%	637	179,022	72,976	\$3,648,800	\$12.16	\$3.71

Reduced line losses saves money... every year

Assumptions: 100 km (62 mile) 230 kV line; Drake Equivalent Conductors; 53% Load Factor; 30° C Ambient; 2 fps Wind; .5 Emissivity; .5 Absorbtivity; \$50/MWh; \$1MM/MW; Coal Fired (2.19#/kWh); CO2 \$25/MT

The Value of Emission Reduction

Value of Emission Reductions									
	Peak Amps	Load Factor	MVA	Line Loss Reduction (MWh)	CO2 Reductions (Metric Tons)	SOx Reductions (Metric Tons)	NOx Reductions (Metric Tons)	Value of CO2 per lineal o (meter)	
ACSR	1,000	53%	398						
ACCC®	1,000	53%	398	20,329	63,513	290	98.6	\$5.29	\$1.61
ACSS	1,600	53%	637						
ACCC®	1,600	53%	637	72,976	250,572	1144	389	\$20.88	\$6.36

Reduced line losses reduces fuel consumption ...and associated emissions

Assumptions: 100 km (62 mile) 230 kV line; Drake Equivalent Conductors; 53% Load Factor; 30° C Ambient; 2 fps Wind; .5 Emissivity; .5 Absorbtivity; \$50/MWh; \$1MM/MW; Coal Fired (2.19#/kWh); CO2 \$25/MT

ACCC has an Answer to these Challenges

- Composite technology as a possible solution
 - Strength/Weight ratio 5X Steel
 - CTE 1/7 that of Steel
 - Corrosion resistance
 - Fatigue resistance
 - Being used as solution in many other industries
 - Aircraft, automotive, sports equipment, enclosures
- This allows combinations of
 - More capacity for same OD and weight (more aluminum)
 - or same capacity with smaller OD and less weight
 - Less sag with increased capacity with same towers and ROW
 - Longer spans (or shorter towers)
 - Potentially lower overall project costs and shorter schedules

Alternatives to ACSR

- ACCC Composite core, annealed aluminum trap wire (1350-0)
- ACCR Metal matrix composite core, zirconium-aluminum alloy round or trap wire
- Invar Lower CTE steel core (not as low as ACCC, magnetic losses)
- ACSS Annealed aluminum wire, steel core carries weight
- ACSS/TW-285 Stronger steel, various aluminum wire types
- Gap Like ACSS but core/conductor greased "gap" for pre-tensioning (difficult installation, grease leakage)

ACCC Advantages

- Low thermal sag -> cure NERC clearance violations
- Lighter weight -> Smaller towers, smaller "footprint"

- Lower losses -> energy savings, keeps rates lower
- Corrosion resistance
- Fatigue resistance

Reduced Sag

(80 vs 100 feet, ACCC vs. ACSS)

"Drake ≠ Drake"

- Name of conductors based on round wire ACSR outside diameter
- Trap wire has more conductor cross-sectional area for same O.D.
- ACCC trap wire has even more due to smaller, lighter core
- Must think in terms of ampacity
- Example: ACSR and ACCC Drake, same sag

"Drake"	O.D. (inches)	Amps (at rated temperature)*
ACSR	1.108	908
ACCC	1.108	1786

* ACSR 75C, ACCC 180C, Amb: 25C, wind 2 fps, Lat 32N, June 21

Case Study: AEP Texas

- Sag limited feed to city
- Reliability impact for city. ERCOT required fix
- Hard constraints on ROW
- AEP did live replacement of two bundled 345 kV Drake

Case Study 90th South

- Pacificorp, 90 South to Oquirrh, Utah
- In city construction, extensive underbuild, pole upgrade very expensive
- Sub-trade coordination "impossible"
- ACCC allowed upgrade with existing poles, minimal impacts, saved 100 structures
- Called "Magic wire" by utility

Case Study: NV Energy Carson City

- 129 mile line Carson City to Reno
- Sag limited, very old (1954)
- Permits for upgrade "unavailable"
- Would take 7 years to permit
- ACCC allowed upgrade with existing structures
- Done in 4 months
- Conductor survived fire that destroyed poles and wind that uprooted poles

Case Study: Lake Nzilo, Congo, 4,491 ft

