Customer-Sited Solar Generation

Net Cost or Net Benefit?

Patrick J. Griebel

 Attorney and Board Member: Renewable Energy Industries Association;

General Manager of Solar Installation Companies in the New Mexico

Market;

• Genuinely nice fella under most circumstances

Arizona Study of Distributed Generation Costs and Benefits

- Crossborder Energy (Thomas Beach and Patrick McGuire)
- Focused on the effect of demand-side (customer-sited) solar would have on ratepayers
- Analyzed solar over the useful life of solar equipment (20-30 years)
- Conclusion: "...the benefits of DG on the APS system exceed the cost, such that new DG resources will not impose a burden on APS ratepayers."
- \$0.22 to \$0.24 benefit compared to \$0.14 to \$0.16 costs

 Table 1: Benefits and Costs of Solar DG on the APS System

Benefits	20-year levelized cents per kWh (2014 \$)		
Energy	6.4 to 7.5		
Generation capacity	6.7 to 7.6		
Ancillary services & Capacity reserves	1.5		
Transm ission	2.1 to 2.3		
Distributi on	0.2		
Envir onmental	0.1		
Avoi ded Renewables	4.5		
Total Benefits	21.5 to 23.7		
Costs	20-year levelized cents per kWh (2014 \$)		
Lost retail rate revenues	13.7		
DG incentives	0 to 1.6		
Integration costs	0.2		
Total Costs	13.9 to 15.5		

Evaluating the Benefits and Costs of Net Energy Metering in California

- Crossborder Energy (Thomas Beach and Patrick McGuire)
- Explored claims by California's investor-owned utilities that the net metering policies caused substantial cost-shifts between solar customers and those without solar (particularly in residential markets)
- Finding: Net metering actually created a small net benefit to ratepayers on average, across various IOU markets
- Ranged from cost to ratepayers of \$0.013 (just over a cent) in PG&E territory to benefit of \$0.028 in SDG&E.

Net Metering in Mississippi

- Commissioned by the Public Service Commission
- Authors Elizabeth Stanton, et. al. Synapse Energy Economics
- Finding: Net metering provides net benefits (benefit-cost ratio above 1:0) under almost all of the scenarios and sensitivities analyzed.

	tow	Mid	High
Fuel Price Scenario	1.17	1.19	1.21
Capacity Value Sensitivities	1.11	1.19	1.26
Avoided T&D Sensitivities	1.01	1.19	1.32
CO ₂ Price Sensitivities	1.16	1.19	1.24
Combined Scenarios	0.89	1.19	1.47

Evaluation of Net Metering in Vermont

- Mandated study by the legislature, directed to "include an analysis of whether and to what extent customers using net metering systems under [state statute] are subsidized by other retail electric customers who do not employ net metering."
- Included utility lost revenue as a "cost" in the analysis
- Findings: Net metered systems do not impost a significant net cost to ratepayers who are not net metering participants.
- Answer seems to turn on the degree to which future greenhouse gas compliance costs are included.

Figure 5. Annual costs and benefits associated with a 4 kW fixed solar PV residential system installed in 2013.

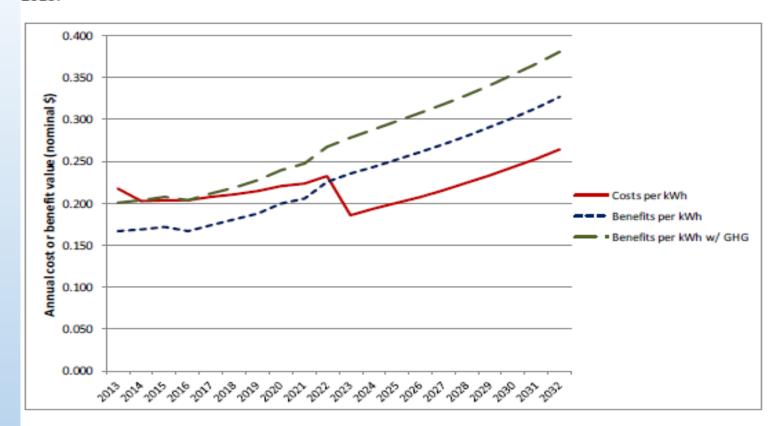


Table 4. Levelized cost, benefit, and net benefit of a 4 kW fixed solar PV residential system installed in 2013 to other ratepayers individually ("ratepayer") or statewide.

Units: \$ per kW	h generated	No GHG value included		GHG value included	
	Cost	Benefit	Net Benefit	Benefit	Net Benefit
Ratepayer	0.221	0.215	(\$0.006)	\$0.257	\$0.036
Statewide	0.222	0.222	\$0.000	\$0.264	\$0.043

Maine Distributed Solar Valuation Study

- 2015 Study, prepared for Legislative Committee
- Study done by Clean Power Research, Pace Law School, and others
- Findings:
 - Found significant net benefit of Solar DG
 - First year "snapshot" benefit (net) of \$0.182/kwH
 - Long-term, Levelized benefit (net) of \$0.337/kwH
- Examined several categories of cost and benefit and compared

Figure ES- 2. CMP Distributed Value – 25 Year Levelized (\$ per kWh) Load **Loss Savings** Distr. PV **Gross Value** Match **Factor** Value **Factor** В (1+C) D 25 Year Levelized (\$/kWh) (%) (%) (\$/kWh) Avoided Energy Cost \$0.076 6.2% \$0.081 Avoided Gen. Capacity Cost \$0.068 54.4% 9.3% \$0.040 Energy Avoided Res. Gen. Capacity Cost \$0.005 \$0.009 54.4% 9.3% Supply Avoided NG Pipeline Cost Solar Integration Cost (\$0.005)(\$0.005)**Avoided Market Costs** 6.2% Transmission \$0.138 Avoided Trans. Capacity Cost \$0.016 \$0.063 23.9% 9.3% Delivery Service Distribution Avoided Dist. Capacity Cost Delivery Voltage Regulation Service Net Social Cost of Carbon \$0.020 \$0.021 6.2% Societal Benefits Environmental Net Social Cost of SO₂ \$0.058 6.2% \$0.062 Net Social Cost of NOx \$0.012 6.2% \$0.013 \$0.199 Market Price Response \$0.062 6.2% \$0.066 Other \$0.035 \$0.037 Avoided Fuel Price Uncertainty 6.2% \$0.337

Gross Values represent the value of perfectly dispatchable, centralized resources. These are adjusted using

- Load Match Factors to account for the non-dispatchability of solar; and
- Loss Savings Factors to account for the benefit of avoiding energy losses in the transmission and distribution systems.

Why the "Debate"?

Nature of typical solar benefits – conflict with utility revenue model:

- Avoided fuel no problem there
- Avoided Generation Capacity (utility scale)
- Avoided Transmission Capacity Cost
- Use of variable rate-design to cover fixed costs
- Solutions to de-conflict solar DG with utility revenue model?